Residue-specific structures and membrane locations of pH-low insertion peptide by solid-state nuclear magnetic resonance

نویسندگان

  • Nicolas S Shu
  • Michael S Chung
  • Lan Yao
  • Ming An
  • Wei Qiang
چکیده

The pH-low insertion peptide (pHLIP) binds to a membrane at pH 7.4 unstructured but folds across the bilayer as a transmembrane helix at pH∼6. Despite their promising applications as imaging probes and drug carriers that target cancer cells for cytoplasmic cargo delivery, the mechanism of pH modulation on pHLIP-membrane interactions has not been completely understood. Here, we show the first study on membrane-associated pHLIP using solid-state NMR spectroscopy. Data on residue-specific conformation and membrane location describe pHLIP in various surface-bound and membrane-inserted states at pH 7.4, 6.4 and 5.3. The critical membrane-adsorbed state is more complex than previously envisioned. At pH 6.4, for the major unstructured population, the peptide sinks deeper into the membrane in a state II' that is distinct from the adsorbed state II observed at pH 7.4, which may enable pHLIP to sense slight change in acidity even before insertion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REDOR solid-state NMR as a probe of the membrane locations of membrane-associated peptides and proteins.

Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein (13)CO nuclei and membrane lipid or cholesterol (2)H and (31)P nuclei. Specific (13)CO labeling is used to enable unambiguous assignment and (2)H labeling covers a small region of the lipid or cholesterol molecule. ...

متن کامل

Water-protein interactions of an arginine-rich membrane peptide in lipid bilayers investigated by solid-state nuclear magnetic resonance spectroscopy.

The interaction of an arginine (Arg) residue with water in a transmembrane antimicrobial peptide, PG-1, is investigated by two-dimensional heteronuclear correlation (HETCOR), solid-state nuclear magnetic resonance (NMR) spectroscopy. Using (13)C and (15)N dipolar-edited (1)H-(15)N HETCOR experiments, we unambiguously assigned a water-guanidinium cross-peak that is distinct from intramolecular p...

متن کامل

Solid-state nuclear magnetic resonance evidence for an extended beta strand conformation of the membrane-bound HIV-1 fusion peptide.

Solid-state nuclear magnetic resonance (NMR) spectroscopy was applied to the membrane-bound form of a synthetic peptide representing the 23-residue N-terminal fusion peptide domain of the HIV-1 gp41 envelope glycoprotein. 1D solid-state NMR line width measurements of singly 13C carbonyl labeled peptides showed that a significant population of the membrane-bound peptide is well-structured in its...

متن کامل

Solid-state nuclear magnetic resonance studies of HIV and influenza fusion peptide orientations in membrane bilayers using stacked glass plate samples.

The human immunodeficiency virus (HIV) and influenza virus fusion peptides are approximately 20-residue sequences which catalyze the fusion of viral and host cell membranes. The orientations of these peptides in lipid bilayers have been probed with 15N solid-state nuclear magnetic resonance (NMR) spectroscopy of samples containing membranes oriented between stacked glass plates. Each of the pep...

متن کامل

Solid-State Nuclear Magnetic Resonance Measurements of HIV Fusion Peptide CO to Lipid P Proximities Support Similar Partially Inserted Membrane Locations of the α Helical and β Sheet Peptide Structures

Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the ∼25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015